skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hoffman, Adam S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 13, 2026
  2. Over the last 80 years, chlorine (Cl) has been the primary promoter of the ethylene epoxidation reaction valued at ~40 billion USD per year, providing a ~25% selectivity increase over unpromoted silver (Ag) (~55%). Promoters such as cesium, rhenium, and molybdenum each add a few percent of selectivity enhancements to achieve 90% overall, but their codependence on Cl makes optimizing and understanding their function complex. We took a theory-guided, single-atom alloy approach to identify nickel (Ni) as a dopant in Ag that can facilitate selective oxidation by activating molecular oxygen (O2) without binding oxygen (O) too strongly. Surface science experiments confirmed the facile adsorption/desorption of O2on NiAg, as well as demonstrating that Ni serves to stabilize unselective nucleophilic oxygen. Supported Ag catalyst studies revealed that the addition of Ni in a 1:200 Ni to Ag atomic ratio provides a ~25% selectivity increase without the need for Cl co-flow and acts cooperatively with Cl, resulting in a further 10% initial increase in selectivity. 
    more » « less
    Free, publicly-accessible full text available February 21, 2026
  3. The requirement for C2H2concentrations below 2 parts per million (ppm) in gas streams for C2H4polymerization necessitates its semihydrogenation to C2H4. We demonstrate selective chemical looping combustion of C2H2in C2H4-rich streams by Bi2O3as an alternative catalytic pathway to reduce C2H2concentration below 2 ppm. Bi2O3combusts C2H2with a first-order rate constant that is 3000 times greater than the rate constant for C2H4combustion. In successive redox cycles, the lattice O of Bi2O3can be fully replenished without discernible changes in local Bi coordination or C2H2combustion selectivity. Heterolytic activation of C–H bonds across Bi–O sites and the higher acidity of C2H2results in lower barriers for C2H2activation than C2H4, enabling selective catalytic hydrocarbon combustion leveraging differences in molecular deprotonation energies. 
    more » « less
    Free, publicly-accessible full text available February 14, 2026
  4. The unique properties of the lanthanide (Ln) elements make them critical components of modern technologies, such as lasers, anti-corrosive films and catalysts. Thus, there is significant interest in establishing structure–property relationships for Ln-containing materials to advance these technologies. Extended X-ray absorption fine structure (EXAFS) is an excellent technique for this task considering its ability to determine the average local structure around the Ln atoms for both crystalline and amorphous materials. However, the limited availability of EXAFS reference spectra of the Ln oxides and challenges in the EXAFS analysis have hindered the application of this technique to these elements. The challenges include the limitedk-range available for the analysis due to the superposition ofL-edges on the EXAFS, multielectron excitations (MEEs) creating erroneous peaks in the EXAFS and the presence of inequivalent absorption sites. Herein, we removed MEEs to model the local atomic environment more accurately for light Ln oxides. Further, we investigated the use of cubic and non-cubic lattice expansion to minimize the fitting parameters needed and connect the fitting parameters to physically meaningful crystal parameters. The cubic expansion reduced the number of fitting parameters but resulted in a statistically worse fit. The non-cubic expansion resulted in a similar quality fit and showed non-isotropic expansion in the crystal lattice of Nd2O3. In total, the EXAFS spectra and the fits for the entire set of Ln oxides (excluding promethium) are included. The knowledge developed here can assist in the structural determination of a wide variety of Ln compounds and can further studies on their structure–property relationships. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. Supported noble metal catalysts, ubiquitous in chemical technology, often undergo dynamic transformations between reduced and oxidized states—which influence the metal nuclearities, oxidation states, and catalytic properties. 
    more » « less
  6. In this study, we present an investigation aimed at characterizing and understanding the synergistic interactions in encapsulated catalytic structures between the metal core ( i.e. , Pd) and oxide shell ( i.e. , TiO 2 , ZrO 2 , and CeO 2 ). Encapsulated catalysts were synthesized using a two-step procedure involving the initial colloidal synthesis of Pd nanoparticles (NPs) capped by various ligands and subsequent sol–gel encapsulation of the NPs with porous MO 2 (M = Ti, Zr, Ce) shells. The encapsulated catalytic systems displayed higher activity than the Pd/MO 2 supported structures due to unique physicochemical properties at the Pd–MO 2 interface. Pd@ZrO 2 exhibited the highest catalytic activity for CO oxidation. Results also suggested that the active sites in Pd encapsulated by an amorphous ZrO 2 shell structure were significantly more active than the crystalline oxide encapsulated structures at low temperatures. Furthermore, CO DRIFTS studies showed that Pd redispersion occurred under CO oxidation reaction conditions and as a function of the oxide shell composition, being observed in Pd@TiO 2 systems only, with potential formation of smaller NPs and oxide-supported Pd clusters after reaction. This investigation demonstrated that metal oxide composition and (in some cases) crystallinity play major roles in catalyst activity for encapsulated catalytic systems. 
    more » « less